综合百科行业百科金融百科经济百科资源百科管理百科
管理百科
管理营销
资源百科
人力财务
经济百科
经济贸易
金融百科
金融证券
行业百科
物流咨询
综合百科
人物品牌

几何平均数

  	      	      	    	    	      	    

几何平均数(Geometric mean)

目录

几何平均数的概念

  几何平均数是n个变量值连乘积的n次方根。

  几何平均数多用于计算平均比率和平均速度。如:平均利率平均发展速度平均合格率等。

几何平均数的计算

  1、简单几何平均法

  G=\sqrt[n]{X_1\times X_2\times\ldots\times X_n}=\sqrt[n]{\prod_{i=1}^N X_i}

  2、加权几何平均法

  G=\sqrt[\sum f]{X_1^{f_1}\times X_2^{f_2}\times\ldots\times X_n^{f_n}}=\sqrt[\sum^n_{i=1}f]{\prod_{i=1}^N X_i^{f_i}}

几何平均数的特点

  1、几何平均数受极端值的影响较算术平均数小。

  2、如果变量值有负值,计算出的几何平均数就会成为负数或虚数。

  3、它仅适用于具有等比或近似等比关系的数据。

  4、几何平均数的对数是各变量值对数的算术平均数

计算几何平均数应注意的问题

  1、变量数列中任何一个变量值不能为0,一个为0,则几何平均数为0。

  2、用环比指数计算的几何平均易受最初水平和最末水平的影响。

  3、几何平均法主要用于动态平均数的计算。

几何平均数的计算举例

  假定某地储蓄年利率(按复利计算):5%持续1.5年,3%持续2.5年,2.2%持续1年。请问此5年内该地平均储蓄年利率。该地平均储蓄年利率:

  G=\sqrt[1.5+2.5+1]{1.05^{1.5}\times1.03^{2.5}\times1.022^1}-1

  =\sqrt[5]{1.183935}-1=3.43%

几何平均数较与算术平均数比较

  几何平均数较之算术平均数,应用范围较窄,它有如下特点:

  ①如果数列中有一个标志值等于零或负值,就无法计算G

  ②G受极端值影响较X和H小;

  ③它适用于反映特定现象的平均水平,即现象的总标志值不是各单位标志值的总和,而是各单位标志值的连乘积的情形。对于这类社会经济现象,不能采用算术平均数反映其一般水平,而需采用几何平均数。

算术平均数调和平均数和几何平均数的数量关系

  算术平均数、调和平均数和几何平均数三者间存在如下数量关系:

    H≤G≤X 

  并且只有当所有变量值都相等时,这三种平均数才相等

相关条目