聚热点 juredian

野亚希:算术平均值 几何平均值 哪个比较好

于慧的回答:

算术平均值

DaDa的回答:

算术平均数,arithmetic mean,用一组数的个数作除数去除这一组数的和所得出的平均值,也作average 几何平均数,geometric mean,作为n个因数乘积的数的n次方根,通常是n的正数根 设a1,a2,a3,...,an是n个正实数,则(a1+a2+a3+...+an)/n≥n次√(a1*a2*a3*...*an),当且仅当a1=a2=…=an时,均值不等式左右两边取等号 ●【均值不等式的变形】 (1)对正实数a,b,有a^2+b^2≥2ab (当且仅当a=b时取“=”号),a^2+b^2>0>-2ab (2)对非负实数a,b,有a+b≥2√(a*b)≥0,即(a+b)/2≥√(a*b)≥0 (3)对负实数a,b,有a+b<0<2√(a*b) (4)对实数a,b(a≥b),有a(a-b)≥b(a-b) (5)对非负数a,b,有a^2+b^2≥2ab≥0 (6)对非负数a,b,有a^2+b^2 ≥1/2*(a+b)^2≥ab (7)对非负数a,b,c,有a^2+b^2+c^2≥1/3*(a+b+c)^2 (8)对非负数a,b,c,有a^2+b^2+c^2≥ab+bc+ac (9)对非负数a,b,有a^2+ab+b^2≥3/4*(a+b)^2 2/(1/a+1/b)≤√ab≤a+b/2≤√((a^2+b^2)/2) ●【均值不等式的证明】 方法很多,数学归纳法(第一或反向归纳)、拉格朗日乘数法、琴生不等式法、排序不等式法、柯西不等式法等等 下面介绍个好理解的方法 琴生不等式法 琴生不等式:上凸函数f(x),x1,x2,...xn是函数f(x)在区间(a,b)内的任意n个点, 则有:f[(x1+x2+...+xn)/n]≥1/n*[f(x1)+f(x2)+...+f(xn)] 设f(x)=lnx,f(x)为上凸增函数 所以,ln[(x1+x2+...+xn)/n]≥1/n*[ln(x1)+ln(x2)+...+ln(xn)]=lnn次√(x1*x2*...*xn) 即(x1+x2+...+xn)/n≥n次√(x1*x2*...*xn) ●【均值不等式的应用】 例一 证明不等式:2√x≥3-1/x (x>0) 证明:2√x+1/x=√x+√x+1/x≥3*3次√(√x)*(√x)*(1/x)=3 所以,2√x≥3-1/x 例二 长方形的面积为p,求周长的最小值 解:设长,宽分别为a,b,则a*b=p 因为a+b≥2√ab,所以2(a+b)≥4√ab=4√p 周长最小值为4√p 例三 长方形的周长为p,求面积的最大值 解:设长,宽分别为a,b,则2(a+b)=p 因为a+b=p/2≥2√ab,所以ab≤p^2/16 面积最大值是p^2/16 ●【均值不等式的总结】 1、调和平均数:hn=n/(1/a1+1/a2+...+1/an) 2、几何平均数:gn=(a1a2...an)^(1/n)=n次√(a1*a2*a3*...*an) 3、算术平均数:an=(a1+a2+...+an)/n 4、平方平均数:qn=√ [(a1^2+a2^2+...+an^2)/n] 这四种平均数满足hn≤gn≤an≤qn a1、a2、… 、an∈r +,当且仅当a1=a2= … =an时取“=”号

寿兰的回答:

搜索建议: