当前位置: > 热议

中考数学:四边形16个重要考点全梳理

时间:2022-04-20 05:39:12 热议 我要投稿

四边形16个重要考点梳理

【变式求解】

【解析】

(1)可通过构建全等三角形求解.延长GP交DC于H,可证三角形DHP和PGF全等,已知的有DC∥GF,根据平行线间的内错角相等可得出两三角形中两组对应的角相等,又有DP=PF,因此构成了全等三角形判定条件中的(AAS),于是两三角形全等,那么HP=PG,DH=GF=BG,那么可得出CH=CG,于是三角形CHG就是等腰三角形且CP是底边上的中线,根据等腰三角形三线合一的特点,即可得出CP=PG=PH,CP⊥PG;

(2)方法同(1),只不过三角形CHG是个等腰三角形,且顶角为120°,可根据三角函数来得出PG、CP的比例关系;

(3)经过(1)(2)的解题过程,我们要构建出以CP为底边中线的等腰三角形,那么可延长GP到H,使PH=PG,连接CH、DH,那么根据前两问的解题过程,我们要求的是三角形CHG是个等腰三角形,关键是证三角形CDH和CBG全等,已知的只有CD=CB,我们可通过其他的全等三角形来得出三角形CDH和CBG全等的条件.三角形DHP和FGP中,有一组对顶角,DP=PF,HP=PG,那么这两个三角形就全等,可得出DH=GF=BG,∠HDP=∠GFP,根据平行线间的内错角相等可得出∠CDP=∠EFD,那么∠CDH=∠EFG=∠CBG,由此可得出三角形CDH和CBG全等,然后证法同(2).

【小结】本题主要考查了正方形,菱形的性质,以及全等三角形的判定等知识点,根据已知和所求的条件正确的构建出相关的全等三角形是解题的关键.