朱振华的回答:
假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得: S=sqrt{s(s-a)(s-b)(s-c)} 而公式里的s: s=frac{a+b+c}{2} 由于任何n边的多边形都可以分割成n-2个三角形,所以海伦公式可以用作求多边形面积的公式。比如说测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地导出答案。 [编辑]证明 与海伦在他的着作"Metrica"中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为A、B、C,则馀弦定理为 cos(C) = frac{a^2+b^2-c^2}{2ab} 从而有 sin(C) = sqrt{1-cos^2(C)} = frac{ sqrt{-a^4 -b^4 -c^4 +2a^2b^2 +2b^2c^2 +2c^2a^2} }{2ab} 因此三角形的面积S为 S = frac{1}{2}ab sin(C) = frac{1}{4}sqrt{-a^4 -b^4 -c^4 +2a^2b^2 +2b^2c^2 +2c^2a^2} = sqrt{s(s-a)(s-b)(s-c)} 最后的等号部分可用因式分解予以导出。
王淼的回答:
设:三角形的三边分别为 a ,b , c. 公式为:√(p*(p-a)*(p-b)*(p-c)) ; p=(a+b+c)/2 ;
萝卜丝的回答: