综合百科行业百科金融百科经济百科资源百科管理百科
管理百科
管理营销
资源百科
人力财务
经济百科
经济贸易
金融百科
金融证券
行业百科
物流咨询
综合百科
人物品牌

TOPSIS法

  	      	      	    	    	      	    

TOPSIS法(Technique for Order Preferenceby Similarity to Ideal Solution,)逼近理想解排序法、理想点法

目录

TOPSIS法概述

  TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution )法C.L.HwangK.Yoon于1981年首次提出,TOPSIS法根据有限个评价对象与理想化目标的接近程度进行排序的方法,是在现有的对象中进行相对优劣的评价。理想化目标(Ideal Solution)有两个,一个是肯定的理想目标(positive ideal solution)或称最优目标,一个是否定的理想目标(negative ideal solution)或称最劣目标,评价最好的对象应该是与最优目标的距离最近,而与最劣目标最远,距离的计算可采用明考斯基距离,常用的欧几里德几何距离是明考斯基距离的特殊情况。

  TOPSIS法是一种理想目标相似性的顺序选优技术,在多目标决策分析中是一种非常有效的方法。它通过归一化后的数据规范化矩阵,找出多个目标中最优目标和最劣目标(分别用理想解和反理想解表示) ,分别计算各评价目标与理想解和反理想解的距离,获得各目标与理想解的贴近度,按理想解贴近度的大小排序,以此作为评价目标优劣的依据。贴近度取值在0~1 之间,该值愈接近1,表示相应的评价目标越接近最优水平;反之,该值愈接近0,表示评价目标越接近最劣水平。该方法已经在土地利用规划、物料选择评估、项目投资、医疗卫生等众多领域得到成功的应用,明显提高了多目标决策分析的科学性、准确性和可操作性。

TOPSIS法的基本原理

  其基本原理,是通过检测评价对象与最优解、最劣解的距离来进行排序,若评价对象最靠近最优解同时又最远离最劣解,则为最好;否则为最差。其中最优解的各指标值都达到各评价指标的最优值。最劣解的各指标值都达到各评价指标的最差值。

  TOPSIS法中“理想解”和“负理想解”是TOPSIS法的两个基本概念。所谓理想解是一设想的最优的解(方案),它的各个属性值都达到各备选方案中的最好的值;而负理想解是一设想的最劣的解(方案),它的各个属性值都达到各备选方案中的最坏的值。方案排序的规则是把各备选方案与理想解和负理想解做比较,若其中有一个方案最接近理想解,而同时又远离负理想解,则该方案是备选方案中最好的方案。

TOPSIS法的数学模型[1]

  遇到多目标最优化问题时,通常有m 个评价目标D_1,D_2,\cdots,D_m, 每个目标有n 评价指标X_1,X_2,\cdots,X_n。首先邀请相关专家对评价指标(包括定性指标和定量指标) 进行打分,然后将打分结果表示成数学矩阵形式,建立下列特征矩阵:

  D=\begin{bmatrix}x_{11} & \cdots & x_{1j} & \cdots & x_{1jn} \\ \vdots &  & \vdots & & \vdots \\ x_{i1} & \cdots & x_{ij} & \cdots & x_{in} \\ \vdots & & \vdots & & \vdots \\ x_{m1} & \cdots & x_{mj} & \cdots & x_{mn} \end{bmatrix}=\begin{bmatrix}D_1(x_1) \\ \vdots \\ D_i(x_j) \\ \vdots \\ D_m(x_n)\end{bmatrix}

  =\begin{bmatrix}X_1(x_1),\cdots,X_j(x_i),\cdots,X_n(x_m)\end{bmatrix}

  计算规范化矩阵

  对特征矩阵进行规范化处理,得到规格化向量rij ,建立关于规格化向量rij的规范化矩阵

  r_{ij}=\frac{x_{ij}}{\sqrt{\sum_{i=1}^m x_{ij}^2}}

  i=1,2,\ldots,m,j=1,2,\ldots,n

  构造权重规范化矩阵

  通过计算权重规格化值vij,建立关于权重规范 化值vij 的权重规范化矩阵

  v_{ij}=w_jr_{ij},i=1,2,\cdots,m,j=1,2,\cdots,n

  其中,wj是第j 个指标的权重。在基于ASP的动态联盟制造资源评估模型中,采用的权重确定方法有Delphi法对数最小二乘法层次分析法等。

  确定理想解和反理想解

  根据权重规格化值vij来确定理想解A * 和反理想解A:

  A^{*}={(max_{i} v_{ij}|j\in J_1),(min_{i} v_{ij} | j\in J_2),| i=1,2,\cdots,m}={v_1^{*},v_2^{*},\cdots,v_j^{*},\cdots,v_n^{*}}

  A^{-}={(min_{i} v_{ij}|j\in J_1),(max_{i} v_{ij} | j\in J_2),| i=1,2,\cdots,m}={v_1^{-},v_2^{-},\cdots,v_j^{-},\cdots,v_n^{-}}

  其中,J1是收益性指标集, 表示在第i个指标上的最优值; J2是损耗性指标集, 表示在第i个指标上的最劣值。收益性指标越大,对评估结果越有利;损耗性指标越小,对评估结果越有利。反之,则对评估结果不利。

  计算距离尺度

  计算距离尺度,即计算每个目标到理想解和反理想解的距离,距离尺度可以通过n维欧几里得距离来计算。目标到理想解A * 的距离为S * ,到反理想解A的距离为S:

  S^{*}=\sqrt{\sum_{j=1}^n(V_{ij}-v_j^{*})^2}

  S^{-}=\sqrt{\sum_{j=1}^n(V_{ij}-v_j^{-})^2}

  i=1,2,\cdots,m

  其中,v_j^{*}v_j^{-}分别为第j个目标到最优目标及最劣目标的距离, vij是第i个目标第j个评价指标的权重规格化值。S * 为各评价目标与最优目标的接近程度, S * 值越小,评价目标距离理想目标越近,方案越优。

  计算理想解的贴近度C *

  C_i^{*}=\frac{S_i^{-}}{(S_i^{*}+S_i^{-})},i=1,2,\cdots,m

  式中,0\le C_i^{*}\le 1。当C_i^{*}=0时, Ai = A,表示该目标为最劣目标;当C_i^{*}=1时, Ai = A * , 表示该目标为最优目标。在实际的多目标决策中, 最优目标和最劣目标存在的可能性很小。

  根据理想解的贴近度C * 大小进行排序

  根据C * 的值按从小到大的顺序对各评价目标进行排列。排序结果贴近度C * 值越大,该目标越优,C * 值最大的为最优评标目标。

参考文献

  1. 李浩、罗国富、谢庆生.基于应用服务提供商的动态联盟制造资源评估模型研究