综合百科行业百科金融百科经济百科资源百科管理百科
管理百科
管理营销
资源百科
人力财务
经济百科
经济贸易
金融百科
金融证券
行业百科
物流咨询
综合百科
人物品牌

辛普森悖论

  	      	      	    	    	      	    

辛普森悖论(Simpson's Paradox)又译为辛普森诡论

目录

什么是辛普森悖论

  辛普森悖论(Simpson's Paradox)亦有人译为辛普森诡论,为英国统计学家E.H.辛普森E.H.Simpson)于1951年提出的悖论,即在某个条件下的两组数据,分别讨论时都会满足某种性质,可是一旦合并考虑,却可能导致相反的结论。

辛普森悖论实例

  例一:一所美国高校的两个学院,分别是法学院和商学院,新学期招生。人们怀疑这两个学院有性别歧视。现作如下统计

  法学院

性别 录取 拒收 总数 录取比例
男生 8 45 53 15.1%
女生 51 101 152 33.6%
合计 59 146 205

  商学院

性别 录取 拒收 总数 录取比例
男生 201 50 251 80.1%
女生 92 9 101 91.1%
合计 293 59 352

  根据上面两个表格来看,女生在两个学院都被优先录取。即女生的录取比率较。现在将两学院的数据汇总:

性别 录取 拒收 总数 录取比例
男生 209 95 304 68.8%
女生 143 110 253 56.5%
合计 352 205 557

  在总评中,女生的录取比率反而比男生

  借助一幅向量图可以更好的了解情况(右图)
女生单独两个矢量斜率都比男生大,说明它们的比率都比较高。但最后男生总体向量斜率却大于女生
放大
女生单独两个矢量斜率都比男生大,说明它们的比率都比较高。但最后男生总体向量斜率却大于女生

  这个例子说明,简单的将分组数据相加汇总,是不能反映真实情况的。

  就上述例子说,导致辛普森悖论有两个前提。

  1、两个分组的录取率相差很大,就是说法学院录取率很低,而商学院却很高。而同时两种性别的申请者分布比重相反。女性申请者的大部分分布在法学院,相反,男性申请者大部分分布于商学院。结果在数量上来说,拒收率高的法学院拒收了很多的女生,男生虽然有更拒收率,但被拒收的 数量却相对不算多。而录取率很高的商学院虽然有较高的录取比例,但是被拒收的男生数量相对法学院来说则明显较多。

  2、有潜在因素影响着录取情况。就是说,性别并非是录取率高低的唯一因素,甚至可能是毫无影响的。至于在学院中出现的比率差,可能是随机事件。又或者是其他因素作用,比如入学成绩,却刚好出现这种录取比例,使人牵强误认为这是由性别差异而造成的。

辛普森悖论的回避[1]

  为了避免辛普森悖论出现,就需要斟酌个别分组的权重,以一定的系数去消除以分组资料基数差异所造成的影响,同时必需了解该情境是否存在其他潜在要因而综合考虑。

辛普森悖论的管理[1]

  辛普森悖论就像是欲打100场篮球比赛,然后以总胜率评价好坏,于是有人专找高手挑战20场而胜1场,另外80场找平手挑战而胜40场,结果胜率41%,另一人则专挑高手挑战80场而胜8场,而剩下20场平手打个全胜,结果胜率为28%,比41%小很多,但仔细观察挑战对象,后者明显较有实力。

  量与质是不等价的,无奈的是量比质来得容易量测,所以人们总是习惯用量来评定好坏,而此数据却不是重要的。除了质与量的迷思之外,辛普森悖论的另外一个启示是:如果我们在人生的抉择上选择了一条比较难走的路,就得要有可能不被赏识的领悟,所以这算是怀才不遇这个成语在统计上的诠释!

参考文献