综合百科行业百科金融百科经济百科资源百科管理百科
管理百科
管理营销
资源百科
人力财务
经济百科
经济贸易
金融百科
金融证券
行业百科
物流咨询
综合百科
人物品牌

转移概率矩阵

  	      	      	    	    	      	    

转移概率矩阵(Transition Probability Matrix)

目录

什么是转移概率矩阵

  转移概率矩阵:矩阵各元素都是非负的,并且各行元素之和等于1,各元素用概率表示,在一定条件下是互相转移的,故称为转移概率矩阵。如用于市场决策时,矩阵中的元素是市场或顾客的保留、获得或失去的概率。P(k)表示k步转移概率矩阵。

转移概率矩阵的特征

  转移概率矩阵有以下特征:

  ①,0≤Pij≤1

  ②\sum^{n}_{j-1}P_i j=1,即矩阵中每一行转移概率之和等于1。

转移概率矩阵的分析

  所谓矩阵,是指许多个数组成的一个数表。每个数称为矩阵的元素。矩阵的表示方法是用括号将矩阵中的元素括起来,以表示它是一个整体。如A就是一个矩阵。

  A=\begin{bmatrix} a_{11},a_{12}\cdots & a_{1n} \\ \bullet  \bullet & \bullet \\ \bullet \bullet & \bullet\\ \bullet  \bullet & \bullet\\  a_{21},a_{22}\cdots & a_{2n}\\ a_{m1},a_{m2}\cdots & a_{mn}\end{bmatrix}

  这是一个由m行n列的数构成的矩阵, 表示位于矩阵中第i行与第j列交叉点上的元素, 矩阵中的行数与列数可以相等,也可以不等。当它们相等时,矩阵就是一个方阵。

  由转移概率组成的矩阵就是转移概率矩阵。也就是说构成转移概率矩阵的元素是一个个的转移概率。

  R=\begin{bmatrix} P_{11},P_{12}\cdots & P_{1n} \\ \bullet  \bullet & \bullet \\ \bullet \bullet & \bullet\\ \bullet  \bullet & \bullet\\  P_{21},P_{22}\cdots & P_{2n}\\ P_{m1},P_{m2}\cdots & P_{mn}\end{bmatrix}

转移概率与转移概率矩阵[1]

  假定某大学有1万学生,每人每月用1支牙膏,并且只使用“中华”牙膏与“黑妹”牙膏两者之一。根据本月(12月)调查,有3000人使用黑妹牙膏,7000人使用中华牙膏。又据调查,使用黑妹牙膏的3000人中,有60%的人下月将继续使用黑妹牙膏,40%的人将改用中华牙膏; 使用中华牙膏的7000人中, 有70%的人下月将继续使用中华牙膏,30%的人将改用黑妹牙膏。据此,可以得到如表-1所示的统计表。

         表-1 两种牙膏之间的转移概率

  拟用黑妹牙膏中华牙膏
现用  
黑妹牙膏60%40%
中华牙膏30%70%

  上表中的4个概率就称为状态的转移概率,而这四个转移概率组成的矩阵

  B=\begin{bmatrix}60% & 40%\\30% & 70%\end{bmatrix}

  称为转移概率矩阵。可以看出, 转移概率矩阵的一个特点是其各行元素之和为1。 在本例中,其经济意义是:现在使用某种牙膏的人将来使用各种品牌牙膏的人数百分比之和为1。

  2. 用转移概率矩阵预测市场占有率的变化

  有了转移概率矩阵,就可以预测,到下个月(1月份)使用黑妹牙膏和中华牙膏的人数,计算过程如下:

  (3000.7000) \begin{bmatrix}60% & 40%\\30% & 70%\end{bmatrix} =(3900,6100)

  即:1月份使用黑妹牙膏的人数将为3900,而使用中华牙膏的人数将为6100。

  假定转移概率矩阵不变,还可以继续预测到2月份的情况为:

  (3900,6100)\begin{bmatrix}60% & 40%\\30% & 70%\end{bmatrix}

  =(3000,7000)\begin{bmatrix}60% & 40%\\30% & 70%\end{bmatrix}\begin{bmatrix}60% & 40%\\30% & 70%\end{bmatrix}

  =(3000,7000)\begin{bmatrix}60% & 40%\\30% & 70%\end{bmatrix}^2=(4170,5830)

  这里\begin{bmatrix}60% & 40%\\30% & 70%\end{bmatrix}^2称为二步转移矩阵,也即由12月份的情况通过2步转移到2月份的情况。二步转移概率矩阵正好是一步转移概率矩阵的平方。一般地, k步转移概率矩阵

  正好是一步转移概率矩阵的k次方。可以证明,k步转移概率矩阵中,各行元素之和也都为1。

转移概率矩阵案例分析

案例一: 用转移概率矩阵预测市场占有率的变化[1]

  有了转移概率矩阵,就可以预测,到下个月(1月份)使用黑妹牙膏和中华牙膏的人数,计算过程如下:

  (3000,7000)\begin{bmatrix}60% & 40%\\30% & 70%\end{bmatrix}=(3900,6100)

  即:1月份使用黑妹牙膏的人数将为3900,而使用中华牙膏的人数将为6100。 假定转移概率矩阵不变,还可以继续预测到2月份的情况为:

  (3900,6100)\begin{bmatrix}60% & 40%\\30% & 70%\end{bmatrix}

  =(3000,7000)\begin{bmatrix}60% & 40%\\30% & 70%\end{bmatrix}\begin{bmatrix}60% & 40%\\30% & 70%\end{bmatrix}

  =(3000,7000)\begin{bmatrix}60% & 40%\\30% & 70%\end{bmatrix}^2

  =(4170,5830)

  这里\begin{bmatrix}60% & 40%\\30% & 70%\end{bmatrix}^2

  称为二步转移矩阵,也即由12月份的情况通过2步转移到2月份的情况。二步转移概率矩阵正好是一步转移概率矩阵的平方。一般地, k步转移概率矩阵正好是一步转移概率矩阵的k次方。可以证明,k步转移概率矩阵中,各行元素之和也都为1。

参考文献

相关条目