生日悖论(Birthday paradox)
目录 |
生日悖论(Birthday paradox)是指,如果一个房间里有23个或23个以上的人,那么至少有两个人的生日相同的概率要大于50%。这就意味着在一个典型的标准小学班级(30人)中,存在两人生日相同的可能性更高。对于60或者更多的人,这种概率要大于99%。从引起逻辑矛盾的角度来说生日悖论并不是一种悖论,从这个数学事实与一般直觉相抵触的意义上,它才称得上是一个悖论。大多数人会认为,23人中有2人生日相同的概率应该远远小于50%。计算与此相关的概率被称为生日问题,在这个问题之后的数学理论已被用于设计著名的密码攻击方法:生日攻击。
理解生日悖论的关键在于领会相同生日的搭配可以是相当多的。如在前面所提到的例子,23个人可以产生种不同的搭配,而这每一种搭配都有成功相等的可能。从这样的角度看,在253种搭配中产生一对成功的配对也并不是那样的不可思议。
换一个角度,如果你进入了一个有着22个人的房间,房间里的人中会和你有相同生日的概率便不是50:50了,而是变得非常低。原因是这时候只能产生22种不同的搭配。生日问题实际上是在问任何23个人中会有两人生日相同的概率是多少。
假设有n个人在同一房间内,如果要计算有两个人在同一日出生的机率,在不考虑特殊因素的前提下,例如闰年、双胞胎,假设一年365日出生概率是平均分布的(现实生活中,出生机率不是平均分布的)。
计算机率的方法是,首先找出p(n)表示n个人中,每个人的生日日期都不同的概率。假如n > 365,根据鸽巢原理其概率为0,假设n ≤ 365,则概率为:
因为第二个人不能跟第一个人有相同的生日(概率是364/365),第三个人不能跟前两个人生日相同(概率为363/365),依此类推。用阶乘可以写成如下形式:
p(n)表示n个人中至少2人生日相同的概率:
n≤365,根据鸽巢原理, n大于365时概率为1。
当n=23发生的概率大约是0.507。其他数字的概率用上面的算法可以近似的得出来:
n | p(n) |
---|---|
10 | 12% |
20 | 41% |
30 | 70% |
50 | 97% |
100 | 99.99996% |
200 | 99.9999999999999999999999999998% |
300 | 1 − (7 × 10−73) |
350 | 1 − (3 × 10−131) |
≥366 | 100% |
注意所有人都是随机选出的:作为对比,q(n)表示房间中 n个其他人中与特定人(比如你)有相同生日的概率:
当n = 22时概率只有大约0.059,约高于十七分之一。如果n个人中有50%概率存在某人跟你有相同生日, n至少要达到253 。注意这个数字大大高于.究其原因是因为房间内可能有些人生日相同。==数学论证(非数字方法)==
在 Paul Halmos 的自传中,他认为生日悖论仅通过数值上的计算来解释是一种悲哀。为此,Paul Halmos给出了一种概念数学方法的解释,下面就是这种方法(尽管这个方法包含一定的误差)。
乘积:
等于 1-p(n), 因此我们关注第一个n,使得乘积小于1/2,这样我们得到:
由平均数不等式得:
(我们首先利用已知的1到n-1所有整数和等于 n(n-1)/2, 然后利用不等式不等式 1-x < e−x.)
如果仅当:
最后一个表达式的值会小于0.5。
其中"loge"表示自然对数。这个数略微小于506,运气稍微好一点点就可以达到506,等于n2-n,我们就得到n=23。
在推导中,Halmos写道:
这个推导是基于一些数学系学生必须掌握的重要工具。生日问题曾经是一个绝妙的例子,用来演示纯思维是如何胜过机械计算:一两分钟就可以写出这些不等式,而乘法运算则需要更多时间,并更易出错,无论使用的工具是一只铅笔还是一台老式电脑。计算器不能提供的是理解力,或数学才能,或产生更高级、普适化理论的坚实基础。[1]。
然而Halmos的推导只显示至少需要23人保证平等机会下的生日匹配;因为我们不知道给出的不等式有多清晰,因此n=22能够正切的可能也无法确定。
生日悖论可以推广一下:假设有n 个,每一个人都随机地从1和特定的N个数中选择出来一个数(N可能是365或者其他的大于0的整数)。
p(n)表示有两个人选择了同样的数字,这个概率有多大?
下面的逼近公式可以回答这个问题
下面我们泛化生日问题: 给定从符合离散均匀分布的区间[1,d]随机取出n个整数, 至少2个数字相同的概率p(n;d) 有多大?
类似的结果可以根据上面的推导得出。
反算问题可能是:
对这个问题有如下逼近公式:
逼近 | 估计N :=365 | |||||
p | n 推广 | n <N :=365 | n↓ | p(n↓) | n↑ | p(n↑) |
0.01 | 0.14178 √N | 2.70864 | 2 | 0.00274 | 3 | 0.00820 |
0.05 | 0.32029 √N | 6.11916 | 6 | 0.04046 | 7 | 0.05624 |
0.1 | 0.45904 √N | 8.77002 | 8 | 0.07434 | 9 | 0.09462 |
0.2 | 0.66805 √N | 12.76302 | 12 | 0.16702 | 13 | 0.19441 |
0.3 | 0.84460 √N | 16.13607 | 16 | 0.28360 | 17 | 0.31501 |
0.5 | 1.17741 √N | 22.49439 | 22 | 0.47570 | 23 | 0.50730 |
0.7 | 1.55176 √N | 29.64625 | 29 | 0.68097 | 30 | 0.70632 |
0.8 | 1.79412 √N | 34.27666 | 34 | 0.79532 | 35 | 0.81438 |
0.9 | 2.14597 √N | 40.99862 | 40 | 0.89123 | 41 | 0.90315 |
0.95 | 2.44775 √N | 46.76414 | 46 | 0.94825 | 47 | 0.95477 |
0.99 | 3.03485 √N | 57.98081 | 57 | 0.99012 | 58 | 0.99166 |
注意:某些值被着色,说明逼近不总是正确。
生日悖论可以用计算机代码经验性模拟
days := 365; numPeople := 1; prob := 0.0; while prob < 0.5 begin numPeople := numPeople + 1; prob := 1 - ((1-prob) * (days-(numPeople-1)) / days); print "Number of people: " + numPeople; print "Prob. of same birthday: " + prob; end;
生日悖论普遍的应用于检测哈希函数:N-位长度的哈希表可能发生碰撞测试次数不是2N次而是只有2N/2次。这一结论被应用到破解密码学散列函数的生日攻击中。
生日问题所隐含的理论已经在(Schnabel 1938)名字叫做capture-recapture的统计试验得到应用,来估计湖里鱼的数量。
此问题另外一个范化就是求得要在随机选取多少人中才能找到2个人生日相同,相差1天,2天等的概率大于50% 。这是个更难的问题需要用到容斥原理。结果(假设生日依然按照平均分布)正像在标准生日问题中那样令人吃惊:
2人生日相差k天 | #需要的人数 |
---|---|
0 | 23 |
1 | 14 |
2 | 11 |
3 | 9 |
4 | 8 |
5 | 7 |
7 | 6 |
只需要随机抽取6个人,找到两个人生日相差一周以内的概率就会超过50%。
2.Zoe Emily Schnabel: "The estimation of the total fish population of a lake"(某湖中鱼类总量估计), 美国数学月刊 45 (1938年), 348-352页
3.M. Klamkin,D. Newman: "Extensions of the birthday surprise"(生日惊喜的扩充), Journal of Combinatorial Theory 3 (1967年),279-282页。
4.D. Blom: "a birthday problem"生日问题, 美国数学月刊 80 (1973年),1141-1142页。{这一论文证明了当生日按照平均分布,两个生日相同的概率最小。)