综合百科行业百科金融百科经济百科资源百科管理百科
管理百科
管理营销
资源百科
人力财务
经济百科
经济贸易
金融百科
金融证券
行业百科
物流咨询
综合百科
人物品牌

康托尔悖论

  	      	      	    	    	      	    

目录

什么是康托尔悖论

  康托尔悖论是1874年,康托尔开始引进他的令人感到神秘莫测的无穷大概念。康托尔的理论,特别是一一对应的方法造成的无穷中的悖论,与传统观念格格不入,难怪一开始康托尔就遭到那些坚持传统观念人士的强烈反对,说他的理论是“雾中之雾”,甚至有人说他是疯子。

康托尔悖论的来源

  康托尔(Georg Cantor,1845-1918,德) 康托尔1845年出生于俄国的圣彼得堡,后来离开俄国迁入德国,其家庭是犹太人后裔。早在学生时代,康托尔就显露出数学天才,不顾其父亲的反对,他选择了数学作为自己的专业,并于1867年以优异成绩获得了柏林大学哲学博士学位,其后,在哈尔大学得到一个教师职位,1872年提升为教授

  1874年,康托尔开始引进他的令人感到神秘莫测的无穷大概念。伟大的伽利略曾经在先前考虑过无穷大,但康托尔是第一个建立起完整的逻辑结构的人,在这种结构中,他提出一个超限数的序列,可以说,这就是无穷大的级。

  从能够加以描述的集合来说,无穷大的级并不很多,全体整数序列相当于它的第一级,所有实数的集合较高一级,相当于第二级,而所有函数的集合又较高一级,相当于第三级,但到此我们就必须止步了。

  康托尔的观点并未能被同时代的所有人接受,特别是康托尔的老师克朗涅克尔(L.Kronecker)就猛烈攻击康托尔的研究工作,同时出于专业嫉恨,他还竭力阻挠康托尔的提升,不让其在柏林大学获得一个职位。长期的过度疲劳和激烈的争吵论战,使得康托尔的精神终于在1884年崩溃,1918年1月6日,他在哈尔精神病医院逝世。

  一年一度的某中学艺术节又要到来了。本次艺术节共设三项:书画比赛、歌咏比赛和围棋比赛。初二·三班的文艺委员孟娟对本班参赛人员进行统计,结果是:参加书画比赛的15人,参加歌咏比赛的28人,参加围棋比赛的25人,但使孟娟百思不得其解的是,参加人员总计68人,而她的班里总共才有60人,剩余的8人是从何处来的呢?原来,这是由集合的性质造成的。

康托尔悖论的影响

  据康托尔集合理论,任何性质都可以决定一个集合,这样所有的集合又可以组成一个集合,即“所有集合的集合”(大全集)。显然,此集合应该是最大的集合了,因此其基数也应是最大的,然而其子集的集合的基数按“康托尔定理”又必然是更大的,那么,“所有集合的集合”就不成其为“所有集合的集合”,这就是“康托尔悖论”。对这一悖论,康托尔并没有感到害怕,因为通过反证法恰恰证明没有“所有集合的集合”或者说“最大的集合”,当然也没有“最大的基数”。

  悖论的出现这时并没有引起多大的震动,人们觉得这似乎仅仅牵涉到集合理论的一些技术问题,只要作适当的修正,集合论仍然会成为数学大厦的基础,康托尔只是利用悖论进行反证,而并没有细究悖论的来源及意义,他没有意识到这种反证之所以可能,是因为他的理论中所使用的基本概念“集合”、“属于”、“元素”是包含着矛盾的。1901年罗素发表的“罗素悖论”则“剥掉了数学技术性的细节”,使其中的矛盾赤裸裸地暴露出来了!