聚热点 juredian

幂函数图像(高考常见十大函数图象与图例)

1、幂函数的概念

一般地,函数叫做幂函数,其中是自变量,是常数;其定义域是使有意义的值的集合。

例1、已知幂函数,且当时为减函数。求幂函数的解析式。

分析:正确理解幂函数的概念、幂函数的图象与性质。求幂函数的解析式,一般用待定系数法,弄明白幂函数的定义是解题的关键。

解答:由于为幂函数,

所以,解得,或。

当时,,在上为减函数;

当时,,在上为常函数,不合题意,舍去。

故所求幂函数的解析式为。

2、幂函数的图象和性质

图象:

性质:

(1)所有的幂函数在上都有定义,并且图象都过点;

(2)如果,则幂函数的图象过点和,并且在区间上是增函数;

(3)如果,则幂函数的图象过点,并在区间上是减函数。在第一象限内,当从趋向于原点时,图象在轴右方无限地逼近轴,当趋于时,图象在轴上方无限地逼近轴;

(4)当为奇数时,幂函数为奇函数;当为偶数时,幂函数为偶函数。

例2、比较,,的大小。

分析:先利用幂函数的增减性比较与的大小,再根据幂函数的图象比较与的大小。

解答:

而在上单调递增,且

。故。

例3、若函数在区间上是递减函数,求实数m的取值范围。

分析:本题考查简单幂函数的性质以及函数图象的平移问题。

函数是一个比较常用的幂函数,它也叫做反比例函数,其定义域是,是一个奇函数,对称中心为(0,0),在和上都是递减函数。一般地,形如的函数都可以通过对的图象进行变换而得到,所以这些函数的性质都可以借助的性质来得到。

解答:由于

,所以函数的图象是由幂函数

的图象先向右平移2个单位,再向上平移3个单位得到的,所以其图象如图所示。

其单调递减区间是和,而函数在区间上是递减函数,所以应有。

例4、若点在幂函数的图象上,点在幂函数的图象上,定义,试求函数的最大值及其单调区间。

分析:首先根据幂函数的定义求出,然后在同一坐标系下画出函数和的图象,得出的函数图象,最后根据图象求出最大值和单调区间。

解答:设,因为点在的图象上,所以,所以,即;

又设,点在的图象上,所以,所以,即。

在同一坐标系下画出函数和的图象,如图所示,则有

根据图象可知函数的最大值等于,其单调递增区间是(,-1)和(0,1);单调递减区间是和。

例5、已知幂函数是偶函数,且在上是减函数,求函数的解析式,并讨论的奇偶性。

分析:先根据单调性求出m的取值范围,再由奇偶性进一步确定m的取值。讨论的奇偶性时要注意对字母的讨论。

解答:由在上是减函数得,。∵,0,1。

又因为是偶函数,∴只有当时符合题意,故。

于是

当且时,为非奇非偶函数;

当且时,为奇函数;

当且时,为偶函数;

当且时,为既奇又偶函数。

例6、已知幂函数在上是增函数,且在定义域上是偶函数。

(1)求的值,并写出相应的函数的解析式;

(2)对于(1)中求得的函数,设函数。问是否存在实数,使得函数在区间上是减函数,且在区间上是增函数?若存在,请求出的值;若不存在,请说明理由。

分析:第一问先根据单调性求出的取值范围,再由奇偶性进一步确定的取值。第二问可根据复合函数单调性的规律来解。

解答:(1)∵幂函数在上是增函数,∴∴

又,∴

∵在定义域上是偶函数,∴只有当时符合题意,故。

(2)由,则。

假设存在实数,使得满足题设条件。令,则。

∵在上是减函数,∴当时,;当时,。

若在区间上是减函数,且在区间上是增函数,则在上是减函数,且在上是增函数,此时二次函数的对称轴方程是即,

故存在实数,使得函数在区间上是减函数,且在区间上是增函数。

搜索建议:幂函数图像  幂函数图像词条  
热传

 母亲节快乐作文

母亲节快乐作文在平平淡淡的学习、工作、生活中,大家最不陌生的就是作文了吧,写作文是培养人们的观察力、联想力、想象力、思考力和记忆力的重要手段。你知道作文怎样才能...(展开)