邓建辉的回答:
很简单。只是因为我们处于三维空间,大于三维的度量不容易感知。 先从三维谈起,如向量{x1,x2,x3}在三维空间上必然可以分解为 {x1,x2,x3}=x1{1,0,0}+x2{0,1,0}+x3{0,0,1} 这三个分量{1,0,0}{0,1,0}{0,0,1}是线性无关的。而且是正交的。这样空间直角坐标系就有了基。这三个分量可以将任何三维向量线性表出。所以三维向量组成的几何空间其实可以用这三个基表达出任何三维向量。当然,向量和点对应,三维向量其实也是对应三维直角坐标系的一个点。 这样对于n维向量{x1,x2,...,xn}=x1{1,0,..,0}+...+xn{0,0,...,1} 其实在n维空间上就是由n个基构成的一个线性组合。换句话说,它也是其在n维直角坐标系中的一个点。当然,这里的直角的含义是,n个基两两正交。 按照你的要求我再说明白一点,一个n维向量其实就是一个n维欧式空间的一个点。只不过是有n个向量的。 『如果我的回答对您有帮助,请点击下面的“好评”,谢谢,您的采纳是对我莫大的支持。』
陈杰瑞的回答:
n维向量,有 n 个坐标分量,即 n 维空间中的向量 例如平面是二维的,相当于二维向量 例如立体是三维的,相当于三维向量
雨后荷花的回答: