孙 老师的结构教学法主要有以下几点经验非常值得学生们学习:
1、学会找知识的新旧联系。
许多知识都是互相联系的,比如高中时要学的余弦定理,你就应该明白勾股定理就余弦定理的一个特例。找到新旧知识的联系,那么数学就变得简单多了。
课堂上老师常会重复以前的知识,这时候你应努力找到新旧知识的联系,这样学习数学就变得简单而有趣了。就像华罗庚说的,读书应有个过程——先把书读“厚”,再把书读“薄”,也就是说要善于总结规律。
孙 老师则把站在系统的高度教学知识分成了三层意思:
(1)每个数学概念、定理、公式等知识的传输,都是在见树木更见森林、见森林才见树木的状况下进行的;
(2)在教学过程中,对任何细节都鼓励学生追根溯源,凡事都去问为什么,寻找它与其它事物之间的联系;
(3)在系统中进行教学。 孙 老师认为这种做法所起到的作用是:“使学生发现知识之间既盘根错节,又浑然一体,而到后来,知识好像在手心里,了如指掌的一张网,而不再是一堆杂乱无章的瓦砾和一片望而生畏的戈壁滩。”
孙 老师的教学方法被称为“结构教学法”,讲究新知识和旧知识的比较与联系。他并不担心学生的脑子够不够使,因为教师的任务就是造就学生发达的脑子。在他的课上,基本上是先出题,写出公式,然后让学生讨论,上黑板演示,老师在一旁点拨,让学生学会寻找规律。
比如在教三角形内角和定理的证明时,课本上只是延长三角形底边并做出一边的平行线,引导学生做出证明。而 孙 老师则把问题交给学生,上来就让学生猜想三角形内角和是多少,再让学生提出自己的证明。几种证法出来后,孙维刚再问:“那么多边形内角和是多少?”学生答:“(n-2)180°。”“怎么证?”学生们踊跃举手,把几种证法写在黑板上,然后,由 孙 老师做总结,提到了证明所用的就是数学归纳法的思想。数学归纳法是高二才接触的内容,在初一教学中就涉及了,学生接受得了吗?当然, 孙 老师并不指望学生能一下子就理解和掌握数学归纳法,而只是抓住时机对教材结构进行调整,有关知识和方法先“闪现”一下,做个埋伏,做个铺垫,以后还会“再现”,以激发学生的求知欲望,培养他们的探索精神。
孙 老师花费不知多少不眠之夜,设计,编写的“结构教学”和配套教材,取得了极大的成功。“结构教学”使学生成了课堂的主人,课后没有硬性的、繁琐的家庭作业,上课超前学一步,下课更轻松。他的“结构教学法”,注重新旧知识的比较与联系,用他的话说是“八方联系,浑然一体;漫江碧透,鱼翔浅底。”……六年的课程三年学完,学生接连在各种竞赛中获奖。在他看来,生源的差别不应该成为影响教育成果的首要因素,只要方向对头,方法得当,我们的教育对象都能成为栋梁之才。
2、听讲要专心,专心的标准是什么?
是精神集中,不走神吗?
孙 老师觉得这不是一个好的回答,只把精神集中到老师的讲授内容上,很可能是跟在老师的后面亦步亦趋,学生的思维即使在活动,也只是处在被动的状态。
孙 老师的建议是:一个命题提出来了,自己先试着去判断它的真假;一个定理或公式写出来了,自己先试着去证明它;一个例题写出来了,自己先试着分析、解出它。甚至在学习进程中自己设想,该提出什么命题了,该定义什么概念了,让思维跑在老师的前面。如果达不到大幅度的超前,也要设想讲课的老师正在进行的推理的这句话的下一句会是什么。
孙 老师在每届的数学教学中,要求学生做到如下几点:
(1)几乎每道例题、每个定理、每个公式都是引导学生自己动手完成的。
(2)在课堂上要创造条件,造成学生总是想在老师前面、 向 老师(包括课本)挑战的氛围,让学生在思维运动中训练思维。让一个个学生到前面来讲,促进了学生之间聪明才智的相互传染。
(3)从数学学科特点出发,在知识上指导学生注意追根究底,寻找知识之间的联系和规律,在比较中学习新知识,站在哲理的高度思考问题,注重联想。
(4)在解题中指导学生一题多解,多题归一,多解归一,归纳共性,分离个性,并总结出了一套科学有效的解题规律。
(5)提倡和指导学生开展问题研究,练习写论文、写总结。
(6)不能忽视回顾总结工作,学生完成作业后,要回顾、总结、反思,只有掩卷反思才会有所发现和优化。
(7)世上不存在没有“为什么”的事物,凡事需问“所以然”。知其然,更知其所以然,凡事都要问一个为什么。鼓励学生勇于探索大胆创新,各抒己见,展开争论。
孙 老师认为:老师给学生讲题,如果只把题目的解法过程一步一步讲清楚,哪怕再细致明白,而讲不出这些解法步骤是怎么想出来的,对提高学生的解题能力,效果是不大的,甚至起消极作用。要讲清楚自己当时的心绪和想法,在笨拙中学会反思,学会提出问题解决问题。
3、学习的四种基本能力组成了学习的基本模型。
孙 老师训练学生,一要“敢”提问题;二要“会”提问题;三是在发现问题后,找出此知识与彼知识间的相互联系。别人要花一个月,他们仅用三个半天便讲完了高中数学的118个公式。初中三年便提前学完了高中的全部数学课程,而且还增加了许多课本上没有的内容和部分大学的数学课程。初二上到一半,便可以优异的成绩答完前一年的高考数学试卷。
而 孙 老师的学生的成绩,总是和“付出”之间有一道“不等式”:课前不用预习,课上没有笔记,课后没有作业。
孙 老师到底靠什么呢?
孙 老师说:“我给学生出一道题,自己要先做10道题,从中选出最精彩、最典型、最能启发学生思维的。”
在 孙 老师的书橱里,有一摞大硬皮本,共有二十二个(但这只是其中一部分)。上面画着三角、圆锥等各种几何图形,旁边则是密密麻麻的解题笔记。 孙 老师每出一道题,自己要先做上10道题,从中选出最精彩、最典型、最能启发学生思维的,让学生在课堂上讨论,不用预习,不留作业。学生在讨论中感受到学习数学的乐趣,下课自己就会把找题解题当做一种乐趣。这就是 孙 老师教学成功的秘诀。
孙 老师为学生开创了解题的“三级跳”:一题多解(达到熟悉)、多解归一(寻求共性)、多题归一(寻求规律);又是他为学生归纳了4个大规律,15个中规律,30多个小规律,使他们从初一到高三,从代数到几何,再没有不会做的题目了。
心理学研究可以证明, 孙 老师的结构教学法是有理论支持的。心理学研究发现:学优生和学差生的知识组织是不一样的。学差生头脑中的知识是零散的和孤立的,呈现水平排列方式、列举方式,而学优生头脑中的知识是有组织和系统的,知识点按层次排列,并且知识点之间有内在联系,呈现出一个层次网络结构。可见如果知识在头脑中无条理地堆积的话,那么知识越多,越不利于问题的解决,就像是进入图书馆借书一样,当书按一定顺序整齐地排列着,那么书会很容易找到;但书如果无顺序、杂乱无章地堆放着,我们就很难找到需要的书。
有些家长会说自己孩子上课听讲很认真,也挺聪明,但就是考试不出成绩,上课听得很会,就是不会做题。这到底是什么原因呢? 其实这就是知识零散造成的结果。
结构乃是决定事物性质的重要因素。知识的作用,主要不是知识量的作用,而是合理结构的作用。在知识的应用、解决问题的过程中,并非独立的“某个单项知识”,而归根到底是整个知识结构在起作用。
学生学习课内外知识、获取信息,将这些知识、信息进行有目的的加工整理,即把个别的、零散的、无规律的知识、信息,进行分析、归纳、筛选,按其内在联系,分门别类,纳入相应的“知识库”中,使之结构化、系统化,形成网络。这样,运用时可以准确、迅捷地从“知识库”中提取有效的知识信息解决问题,吸收新知识、信息,进而掌握《大纲》中应掌握的知识,形成《大纲》中应形成的能力。对知识信息进行加工整理,并纳入相应的“知识库”,使之结构化、系统化,形成“知识网络”,简而言之:整理知识。这是建立合理的知识结构的关键环节。它实际上包含这样的两个方面:
(1)知识门类化,即对所获取的个别的、零散的、无规律的知识信息进行加工、筛选、并按其内在联系分门别类:
(2)知识结构化,即将门类化的知识、信息纳入“知识库”中,使之结构化、系统化,形成知识网络。
合理的知识结构可以在运用时,快速、准确的提取有效的知识。—个人是否真正把知识学到手了,要用“运用”来检查。如果学了许多知识但不能在“运用”中表现出来,所贮存的知识不能根据需要成为进一步学习和解决实际问题的智慧和力量,那就是没有把知识学到手。引导学生建立合理的知识结构,就是为了帮助学生快速提取,充分运用己掌握的知识,使知识发挥作用。
美国心理学家布鲁纳认为,记忆保持的重要问题不是贮存而运用时“如何把用到的知识易于提取”,“易于提取”的关键又在于“对知识的组织”。因此掌握知识的人要善于把所掌握的知识进行科学安排,到需要时即能知道在何处提取。这让人们想到图书馆的运作情况了。
当你走进一座相当规模的图书馆,藏书几万、几十万、几百万乃至上千万册,想借一本书,只要你递上索书单,工作人员就能从数以万计、十万、百万乃至上千万计的茫茫书海中,快速、准确地找到它,让你如愿以偿。为什么能这样迅速而准确地做到呢?最根本的一点是:图书馆中的每本书,并非零散的,无系统性、规律性的,而是按某种结构标准进行划分归类,使它们从属于各自的类目。工作人员就是以这为基础,根据这些,从相应的不同级别的书库中、书类目中准确快速地找到它的。试想如果你不提供这本书所在的类目情况;如果图书馆的数以万计,乃至上千万计的书没有进行有目的的整理,分门别类,而是随意堆放,毫无规律性、结构性,那么,工作人员要找到它真的如大海捞针,千难万难。由此可见,图书馆的运作过程中,把图书按一定的标准加以分类,并根据这种分类建立相应的各级别各类目的书库,按照设定的各级别各类目的书库情况,对进入馆内的每本书进行分类,标明其从属的类目,至关重要。
建立相应的各个级别的“知识库”,犹如图书馆中级别不一的书库。每个小的知识点和能力训练点,好比进入馆内的经过加工整理类目从属清晰的每本书。建立合理的语文知识结构,在运用时就能准确,迅捷地从众多纷杂的记忆中提取有效的知识。
孙 老师的结构教学法的经验不仅仅可以用在数学学习上,还可以复制到其它学科,因为各学科的思维结构和思维原点是相通的,是有规律可循的。从这些思维原点中提炼出来一个学习的基本模型,这个模型是由四种基本学习能力组成,即:
(1)发现研究对象的能力;
(2)围绕研究对象确定研究角度的能力;
(3)寻找知识之间联系规律的能力;
(4)建构知识网络制作联系导图的能力。
这四种能力的训练能够在短时期内使学生站在系统的高度进行学习,造成学生总是浮想联翩思潮如涌的思维状态。
4、学习的六种复合能力组成了学习的复合模型。
这六种复合学习能力是:
(1)理解概念的能力;
(2)研究概念的能力;
(3)理解原理的能力;
(4)研究原理的能力;
(5)审题解题的能力和研究试题的能力。
学生掌握了这个复合学习模型,提升的是自己的智力素质,这样就可以很轻松自在地运用到所有科目的学习中去,一理通,百理通。更为重要的是,它使使学生在思维的根源上具备了面对问题、探索问题、解决问题的能力,它打开了思维的万千视角,让学生将这种领悟延伸到未来,受益终生。