专题练习:全等三角形
基础训练
1.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是(D)
(第1题图)
A. ∠A=∠D
B. AB=DC
C. ∠ACB=∠DBC
D. AC=BD
2.下列说法正确的是(D)
A. 两个等边三角形一定全等
B. 腰对应相等的两个等腰三角形全等
C. 形状相同的两个三角形全等
D. 全等三角形的面积一定相等
3.如图,正方形ABCD中,点E是AD边中点,BD,CE交于点H,BE,AH交于点G,则下列结论:①AG⊥BE;②BG=4GE;③S△BHE=S△CHD;④∠AHB=∠EHD.其中正确的个数是(D)
A. 1 B. 2
C. 3 D. 4
(第3题图)
4.如图,G,E分别是正方形ABCD的边AB,BC上的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH.
其中,正确的结论有(B)
A. 1个 B. 2个
C. 3个 D. 4个
(第4题图)
5.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有(C)
(第5题图)
A. 1个 B. 2个
C. 3个 D. 4个
6.如图,已知点B,C,F,E在同一直线上,∠1=∠2,BC=EF,要使△ABC≌△DEF,还需添加一个条件,这个条件可以是CA=FD(不唯一)(只需写出一个即可).
(第6题图)
7.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为__4__.
(第7题图)
8.在△ABC中,∠A∶∠C∶∠B=4∶3∶2,且△ABC≌△DEF,则∠DEF=40°.
9.如图,在△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.
(1)求证:△ABE≌DCE.
(2)当∠AEB=50°,求∠EBC的度数.
(第9题图)
解:(1)在△ABE和△DCE中,
∵∴△ABE≌△DCE(AAS).
(2)∵△ABE≌△DCE,
∴BE=EC,∴∠EBC=∠ECB.
∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°.
拓展提高
10.用直尺和圆规作已知角的平分线的示意图,则说明∠CAD=∠DAB的依据是(A)
(第10题图)
A. SSS B. SAS
C. ASA D.AAS
11.小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带( C )
(第11题图)
A. ① B. ②
C. ③ D. ①和②
12.如图,F是正方形ABCD的边CD上的一个动点,BF的垂直平分线交对角线AC于点E,连结BE,FE,则∠EBF的度数是( A )
A. 45° B. 50°
C. 60° D.不确定
(第12题图)
13.如图,正方形ABCD的边长为6,点E,F分别在AB,AD上.若CE=3,且∠ECF=45°,则CF的长为(A)
A. 2 B. 3
C. D.5
(第13题图)
14.如图,以△ABC的三边为边分别作等边△ACD,△ABE,△BCF,则下列结论:①△EBF≌△DFC;②四边形AEFD为平行四边形;③当AB=AC,∠BAC=120°时,四边形AEFD是正方形.其中正确的结论是 ①②(请写出正确结论的序号).
(第14题图)
15.如图,点B,E,C,F在一条直线上,AB=DE,BE=CF,请添加一个条件AC=DF(或∠B=∠DEF或AB∥DE),使△ABC≌△DEF.
(第15题图)
16.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是__50__.
(第16题图)
17.如图,在正方形ABCD的边BA的延长线上作等腰直角△AEF,连结DF,延长BE交DF于点G.若FG=6,EG=2,则线段AG的长为4.
(第17题图)
18.如图,已知点D在△ABC的BC边上,DE∥AC交AB于点E,DF∥AB交AC于点F.
(1)求证:AE=DF.
(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.
(第18题图)
解:(1)证明:∵DE∥AC,
∴∠ADE=∠DAF.
同理∠DAE=∠FDA.
又∵AD=DA,
∴△ADE≌△DAF(ASA),
∴AE=DF.
(2)若AD平分∠BAC,四边形AEDF是菱形,理由如下:
∵DE∥AC,DF∥AB,
∴四边形AEDF是平行四边形,
∵AD平分∠BAC,
∴∠EAD=∠DAF.
又∵∠DAE=∠FDA,
∴∠DAF=∠FDA.∴AF=DF.
∴平行四边形AEDF为菱形.
19.如图,过∠AOB平分线上一点C作CD∥OB交OA于点D,E是线段OC的中点,请过点E画直线分别交射线CD,OB于点M,N,探究线段OD,ON,DM之间的数量关系,并证明你的结论.
(第19题图)
解:线段OD,ON,DM之间的数量关系是:OD=DM+ON.
证明:∵OC是∠AOB的平分线,
∴∠DOC=∠COB.
又∵CD∥OB,∴∠DCO=∠COB,
∴∠DOC=∠DCO,
∴OD=CD=DM+CM.
∵E是线段OC的中点,∴CE=OE.
∵CD∥OB,∴=,
∴CM=ON.
又∵OD=DM+CM,
∴OD=DM+ON.
20.如图,在四边形ABCD中,点E在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC≌△DEC.
(第20题图)
解:∵∠BCE=∠ACD=90°,
∴∠3+∠4=∠4+∠5,
∴∠3=∠5.
在△ACD中,∵∠ACD=90°,
∴∠2+∠D=90°.
∵∠BAE=∠1+∠2=90°,
∴∠1=∠D.
在△ABC和△DEC中,
∵
∴△ABC≌△DEC(AAS).