目录 |
在泛函分析中有多个有名的定理冠以里斯表示定理,它们是为了纪念匈牙利数学家弗里杰什•里斯。
这个定理建立了希尔伯特空间与它的连续对偶空间的一个重要联系:如果底域是实数,两者是等距同构;如果域是复数,两者是等距反同构。如下所述,(反)同构是特别自然的。
设 H 是一个希尔伯特空间,令 H * 表示它的对偶空间,由从 H 到域 或 的所有连续线性泛函。如果 x 是 H 中一个元素,则函数 φx 定义为
是 H * 的一个元素,这里 表示希尔伯特空间的内积。里斯表示定理断言 H * 中任何元素都能惟一地写成这种形式。
定理:映射
是一个等距(反)同构,这就是说:
Φ 的逆映射可以描述为: 给定 H * 中一个元素 φ,核 φ 的正交补是 H 的一维子空间。取那个子空间中一个非零元素 z,令 。则 Φ(x) = φ。
历史上,通常认为这个定理同时由弗里杰什•里斯|里斯和莫里斯•雷内•弗雷歇在1907年发现(见参考文献)。格雷在评论从他认为是原型的里斯(1909)一文到里斯表示定理的发展时说:“给定运算 A[f],可以构造有界变差函数 α(x),使得无论连续函数f(x) 是什么,都有 ”
在量子力学的数学处理中,这个定理可以视为流行的狄拉克符号记法的根据。当定理成立时,每个右括号 有一个相应的左括号 ,对应是清楚的。但是存在拓扑向量空间,比如核空间,里斯表示定理不成立,在这样的情形狄拉克符号变得不合适。
下面的定理表示出 Cc(X) 上的正线性泛函,紧空间|紧支集连续函数 (拓扑学)|连续复值函数空间。下面所说的波莱尔集表示由开集生成的 σ-代数。
局部紧豪斯多夫空间 X 上一个非负可数可加波莱尔测度 μ 是正规的当且仅当
成立只要 E 是开集和 E 是波莱尔集且 μ(E) < ∞。
定理:设 X 是一个局部紧豪斯多夫空间。对 Cc(X) 上任何正线性泛函 ψ,在 X 上存在惟一的波莱尔正则测度 μ 使得
对所有 f ∈ Cc(X)。
进入测度论的一个途径是从拉东测度开始,定义为 C(X) 上一个正线性泛函。这种方式由布尔巴基采取;这里显然假设 X 首先是一个拓扑空间,而不仅是一个集合。对局部紧空间,重新得到了一个积分理论。
下面定理也称为里斯-马尔可夫定理,给出了 C0(X) 的对偶空间的一个具体实现,X 上在无穷远趋于零的连续函数。定理陈述中的波莱尔集合同样指由开集生成的 σ-代数。结论与上一节类似,但不能包含在前一个结果之中。参见下面的技术性注释。
如果 μ 是一个复值可数可加波莱尔测度,μ 是正则的当且仅当非负可数可加测度 |μ| 正则(上一节所定义的)。
定理:设 X 是一个局部紧豪斯多夫空间。对 C0 上任何连续线性泛函 ψ,存在 X 上惟一正则可数可加波莱尔测度 μ 使得
对所有 f∈ C0(X)。ψ 的范数作为线性泛函是 μ 的全变差(:en:total variation|total variation),即
最后,ψ 是正线性泛函|正的当且仅当测度 μ 是非负的。
注:Cc(X) 上任何有界线性泛函惟一延拓为 C0(X) 上有界线性泛函,因为后一个空间是前者的闭包 (拓扑学)|闭包。但是 Cc(X) 上一个无界正线性泛函不能延拓为 C0(X) 上一个有界线性泛函。因此前两个结论应用的情形稍微不同。