设 为一连续函数, 为一正的可积函数,那么存在一点 使得
。
事实上,可以证明,上述的中值点ξ必能在开区间(a,b)内取得,见下方中值点在开区间内存在的证明。
因为 是闭区间上的连续函数, 取得最大值 和最小值 。于是
对不等式求积分,我们有
若 ,则 。 可取 上任一点。
设 ,那么
因为 是连续函数,则必存在一点 ,使得
已知f(x)在[a,b]上连续,设。
知F(x)在[a,b]上连续,在[a,b]内可导,应用拉格朗日中值定理,可得:
,其中
即
所以